prove the BPT THEORM
Answers
Answered by
3
Given: In ΔABC, DE is parallel to BC
Line DE intersects sides AB and AC in points D and E respectively.
To Prove: ADBD=AECE
Construction: Draw EF ⟂ AD and DG⟂ AE and join the segments BE and CD.
Proof:
Area of Triangle= ½ × base× height
In ΔADE and ΔBDE,
Ar(ADE)Ar(DBE)=12×AD×EF12×DB×EF=ADDB(1)
In ΔADE and ΔCDE,
Ar(ADE)Ar(ECD)=12×AE×DG12×EC×DG=AEEC(2)
Note that ΔDBE and ΔECD have a common base DE and lie between the same parallels DE and BC. Also, we know that triangles having the same base and lying between the same parallels are equal in area.
So, we can say that
Ar(ΔDBE)=Ar(ΔECD)
Therefore,
A(ΔADE)A(ΔBDE)=A(ΔADE)A(ΔCDE)
Therefore,
ADBD=AECE
Hence Proved.
Plzz understand the diagram.
and mark it
sofiyasofii244:
thank youuuuu
Answered by
4
plzz refer the attachment HOPE IT HELPS
Attachments:
Similar questions