Prove the following !!!!
( 1 - 2sin²A cos²A ) (sin²A - cos²A) = sin⁸A - cos⁸A
help needed !!!!
Answers
Answered by
7
Hey there !
starting with RHS :
=> sin⁸A - cos⁸A
we know that :-
sin⁸A = (sin⁴A)²
cos⁸A = (cos⁴A)²
This can be written as :-
=> (sin⁴A)² - (cos⁴A)²
Now this is in the form of an identity : a² - b² = (a+b) ( a - b)
=> (sin⁴A + cos⁴A) ( sin⁴A - cos⁴A)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
=> (sin²A)² + (cos²A)² (( sin⁴A - cos⁴A))
(sin²A)² + (cos²A)² can be in the identity : a² + b² = (a+b)² - 2ab
[ (sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2sin²A cos²A ]
=> [(sin²A + cos²A)² - 2sin²A cos²A ] (( sin⁴A - cos⁴A))
Now ,
sin⁴A - cos⁴A
this can be written in the form of the identity a² - b² = (a+b) (a -b)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
sin⁴A - cos⁴A = (sin²A + cos²A) (sin²A - cos²A)
=> => [(sin²A + cos²A)² - 2sin²A cos²A ] (sin²A + cos²A) (sin²A - cos²A)
we know that ,
sin²A + cos²A = 1 [ by identity ]
hence,
=> [ (1)² - 2sin²A cos²A ] (1) ×(sin²A - cos²A)
=> ( 1 - 2sin²A cos²A ) (sin²A - cos²A)
=>LHS
starting with RHS :
=> sin⁸A - cos⁸A
we know that :-
sin⁸A = (sin⁴A)²
cos⁸A = (cos⁴A)²
This can be written as :-
=> (sin⁴A)² - (cos⁴A)²
Now this is in the form of an identity : a² - b² = (a+b) ( a - b)
=> (sin⁴A + cos⁴A) ( sin⁴A - cos⁴A)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
=> (sin²A)² + (cos²A)² (( sin⁴A - cos⁴A))
(sin²A)² + (cos²A)² can be in the identity : a² + b² = (a+b)² - 2ab
[ (sin²A)² + (cos²A)² = (sin²A + cos²A)² - 2sin²A cos²A ]
=> [(sin²A + cos²A)² - 2sin²A cos²A ] (( sin⁴A - cos⁴A))
Now ,
sin⁴A - cos⁴A
this can be written in the form of the identity a² - b² = (a+b) (a -b)
sin⁴A = (sin²A)²
cos⁴A = (cos²A)²
sin⁴A - cos⁴A = (sin²A + cos²A) (sin²A - cos²A)
=> => [(sin²A + cos²A)² - 2sin²A cos²A ] (sin²A + cos²A) (sin²A - cos²A)
we know that ,
sin²A + cos²A = 1 [ by identity ]
hence,
=> [ (1)² - 2sin²A cos²A ] (1) ×(sin²A - cos²A)
=> ( 1 - 2sin²A cos²A ) (sin²A - cos²A)
=>LHS
Answered by
3
Given, RHS = sin^8A - cos^8A can be written as
= (sin^4A)^2 - (cos^4A)^2
We know that a^2 - b^2 = (a+b) * (a-b).
= (sin^4A + cos^4A) * (sin^4A - cos^4A)
= (sin^2A)^2 + (cos^2A)^2) * ((sin^2A)^2 - (cos^2A)^2)
= (sin^2A+cos^2A)^2 - 2sin^2Acos^2A) * (sin^2A+cos^2A) * (sin^2A-cos^2A)
We know that (sin^2A + cos^2A) = 1
= ((1)^2 - 2sin^2Acos^2A)) * 1 * (sin^2A - cos^2A)
= (1 - 2sin^2Acos^2A) * (sin^2A - cos^2A)
= (sin^2A - cos^2A) * (1 - 2sin^2Acos^2A).
LHS = RHS.
Hope this helps!
= (sin^4A)^2 - (cos^4A)^2
We know that a^2 - b^2 = (a+b) * (a-b).
= (sin^4A + cos^4A) * (sin^4A - cos^4A)
= (sin^2A)^2 + (cos^2A)^2) * ((sin^2A)^2 - (cos^2A)^2)
= (sin^2A+cos^2A)^2 - 2sin^2Acos^2A) * (sin^2A+cos^2A) * (sin^2A-cos^2A)
We know that (sin^2A + cos^2A) = 1
= ((1)^2 - 2sin^2Acos^2A)) * 1 * (sin^2A - cos^2A)
= (1 - 2sin^2Acos^2A) * (sin^2A - cos^2A)
= (sin^2A - cos^2A) * (1 - 2sin^2Acos^2A).
LHS = RHS.
Hope this helps!
Similar questions
Geography,
7 months ago
English,
7 months ago
CBSE BOARD XII,
7 months ago
Social Sciences,
1 year ago
Science,
1 year ago
Social Sciences,
1 year ago