Math, asked by prutha2131, 9 months ago

Prove the following:
1.
tan ^{2}  \alpha  -  \sin ^{2}  \alpha  =  \tan ^{2}  \alpha  \times  \sin ^{2}  \alpha

Answers

Answered by nichala23
2

Step-by-step explanation:

Hope this helps u Please make me as a brainliest

Attachments:
Answered by Anonymous
9

Solution :

 \tt  \implies tan ^{2} \alpha - \sin ^{2} \alpha = \tan ^{2} \alpha \times \sin ^{2} \alpha \\  \\  \tt  \implies  \frac{ { \sin }^{2} \alpha  }{ { \cos}^{2} \alpha }  - \sin ^{2} \alpha = \tan ^{2} \alpha \times \sin ^{2} \alpha \\  \\ \tt  \implies  \frac{ { \sin  }^{2} \alpha - \sin ^{2} \alpha. { \cos}^{2} \alpha   }{ { \cos}^{2} \alpha }   = \tan ^{2} \alpha \times \sin ^{2} \alpha \\  \\\tt  \implies  \frac{ { \sin  }^{2} \alpha  (1 -  { \cos}^{2} \alpha)   }{ { \cos}^{2} \alpha }   = \tan ^{2} \alpha \times \sin ^{2} \alpha \\  \\ \tt \implies  \tan ^{2} \alpha \times \sin ^{2} \alpha = \tan ^{2} \alpha \times \sin ^{2} \alpha

L.H.S = R.H.S

Hence Proved

Identities Used :

 \implies \tt \dfrac{ { \sin}^{2} \theta}{ { \cos}^{2}\theta }  =  { \tan}^{2} \theta  \\  \\ \implies \tt 1 -  { \sin}^{2} \theta =  { \cos}^{2}  \theta

Similar questions