Prove the following:
Answers
✪QUESTION: - Prove that Sin^2 18° + cos^2 36° = 3/4.
___________________________________________________________________
✍PROOF :-
Let,
L.H.S. = sin² 18 + cos² 36
=> sin² 18 + ( 1 - 2sin² 18)² - - - - - - (I)
Now, sin 36 = cos 54 - - {compl. rule }
=> sin 2A = cos 3A
=> 2 sin A cos A = 4 cos^3 A - 3 cos A
Dividing by cosA,
=> 2 sin A = 4 cos² A - 3
=> 2 sin A = 4 - 4 sin² A - 3
=> 4 sin² A + 2 sin A - 1 = 0
=> 4 sin² (18) + 2 sin (18) - 1 = 0
By quadratic formula,
=> sin 18 = [-2 ± √(4 + 16) ] / 8
=> sin 18 = (√5 - 1)/4
=> sin² 18 = [5 + 1 - 2√5] /16
=> sin² 18 = (3 - √5)/8
Substituting this in - - (i),
sin² 18 + ( 1 - 2sin² 18)² = (3 - √5)/8 + [1 - 2 (3 - √5)/8]
=> (3 - √5)/8 + [1 - (3 - √5)/4]²
=> (3 - √5)/8 + [(4 - 3 + √5)/4]²
=> (3 - √5)/8 + [(1 + √5)/4]²
=> (3 - √5)/8 + (1+ 5+ 2√5)/16
=> (3 - √5)/8 + (3 + √5)/8
=> (3 - √5 + 3 + √5)/8
=> 3/4 = RHS.
HENCE PROVED
___________________________________________________________________
HOPE IT HELPS :)