Math, asked by mgirap55, 8 months ago

prove the following​

Attachments:

Answers

Answered by abu07arbab786
1

Answer:

here is your answer

Step-by-step explanation:

make me brainliest

Attachments:
Answered by InfiniteSoul
13

\sf{\orange{\underline{\huge{\mathsf{Solution}}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA}{ 1 + CosA} + \dfrac{SinA}{ 1 - CosA} = 2 CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA( 1 - CosA) + SinA( 1 + CosA)}{ ( 1 + CosA)( 1 - CosA)} = 2CosecA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{( a + b)( a - b) = a^2 - b^2 }}}}

⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA( 1 - CosA) + SinA( 1 + CosA)}{  1^2- Cos^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA( 1 - CosA) + SinA( 1 + CosA)}{ 1 - Cos^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA - SinACosA + SinA + SinACosA}{ 1 - Cos^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA - \cancel{SinACosA } + SinA + \cancel{SinACosA}}{ 1 - Cos^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ SinA + SinA }{ 1 - Cos^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{ 1 - Cos^2A = Sin^2A}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ 2SinA}{ Sin^2A} = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ 2 \cancel{SinA }}{ SinA \times \cancel{SinA} } = 2CosecA}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ \dfrac{ 2 }{ SinA} = 2CosecA}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{\dfrac{1}{SinA}= CosecA}}}}

⠀⠀⠀⠀

\sf: \implies\: {\bold{ 2 Cosec A = 2CosecA}}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀.......Hence Proved

⠀⠀⠀⠀

Similar questions