Math, asked by Anonymous, 11 months ago

prove the following
3 and 4​

Attachments:

Answers

Answered by alfiya49
0

Answer:

I HOPE ITS HELP YOU PLEASE MARK ME AS BRAINLIST AND ALSO FOLLOW ME

ANY DOUBT PLZ COMMENT ME

Attachments:
Answered by Anonymous
2

HEY MATE YOUR ANSWER IS HERE...

QUESTION 3 :-

TAKING LHS

 \frac{1}{tan \: a \:  + cot \: a}

BY TRIGNOMATERIC RATIOS★

tan \: a =  \frac{sin \: a}{cos \: a }  \\  \\ cot \: a =  \frac{cos \: a}{sin \: a}

HENCE

 =  \frac{1}{ \frac{sin \: a}{cos \: a} +  \frac{cos \: a}{sin \: a}  }

 =  \frac{1}{ \frac{ {sin}^{2} a \:  +  \:  {cos}^{2} a}{sin \: a \: cos \: a} }

BY TRIGNOMATERIC IDENTITY★

SIN² + COS² = 1

 =  \frac{1}{ \frac{1}{sin \: a \: cos \: a} }

BY SOLVING IT FURTHER

sin \: a \: cos \: a

HENCE PROVED

QUESTION 4 :-

TAKING LHS

tan \: a - cot \: a

BY TRIGNOMATERIC RATIOS★

tan \: a =  \frac{sin \: a}{cos \: a }  \\  \\ cot \: a =  \frac{cos \: a}{sin \: a}

HENCE ,

 \frac{sin \: a}{ \: cos \: a}  -  \frac{cos \: a}{sin \: a}

BY SOLVING UT FURTHER

 \frac{ {sin}^{2} a \:  -  \:  {cos \: }^{2}a }{sin \: a \: cos \: a}

NOW BY TRIGNOMATERIC IDENTITY★

SIN² = 1 - COS²

 =  \frac{(1 -  {cos}^{2} a -  {cos}^{2}a )}{sin \: a \: cos \: a}

BY SOLVING IT FURTHER

 =  \frac{1 - 2 {cos}^{2} a  }{sin \: a \: cos \: a}

HENCE PROVED

THANKS FOR YOUR QUESTION HOPE THIS HELPS

KEEP SMILING ☺️✌️

Similar questions