Math, asked by swanhayden7, 19 days ago

Prove the following



Attachments:

Answers

Answered by mathdude500
9

Question :-

Using the Principle of Mathematical induction, to prove that

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} nx}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2n - 1}  \\

\large\underline{\sf{Solution-}}

Given statement is

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} nx}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2n - 1}  \\

Let assume that,

\rm \: P(n) \:  : \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} nx}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2n - 1}  \\

Step :- 1 For n = 1

\rm \: P(1) \:  : \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} x}{sinx} = 1  \\

\rm \:  \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  sinx = 1  \\

\rm \:  \: \bigg( - cosx\bigg) _{0}^{ \dfrac{\pi}{2} } = 1  \\

\rm \:  - cos\dfrac{\pi}{2} + cos0 = 1

\rm \:  - 0 + 1 = 1

\rm \: 1 = 1

\rm\implies \:P(n) \: is \: true \: for \: n \:  =  \: 1

Step :- 2 Let assume that P(n) is true for n = k, where k is a natural number.

\rm \: P(k) \:  : \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} kx}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2k - 1}  \\

Step :- 3 Now, we have to show that P(n) is true for n = k + 1

\rm \: P(k + 1) \:  : \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} (k + 1)x}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2k + 1}  \\

Now, Consider LHS

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} (k + 1)x}{sinx}  \\

\rm \: =  \:  \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} (k + 1)x -  {sin}^{2} kx +  {sin}^{2} kx}{sinx}  \: dx \\

\rm \: =  \:  \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} (k + 1)x -  {sin}^{2} kx }{sinx}dx  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

We know,

\boxed{\tt{  \:  {sin}^{2}x -  {sin}^{2}y = sin(x + y) \: sin(x - y) \: }} \\

So, using this identity, we get

\rm \: =  \:  \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{sin(2k + 1)x \: sinx}{sinx}dx  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

\rm \: =  \:  \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  sin(2k + 1)xdx  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

\rm \: =  \:  -  \bigg(\dfrac{cos(2k + 1)x}{2k + 1} \bigg) _{0}^{ \dfrac{\pi}{2} }  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

\rm \: =  \:  -  \bigg(\dfrac{cos(2k + 1)\dfrac{\pi}{2}}{2k + 1} -  \frac{cos0}{2k + 1} \bigg)  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

\rm \: =  \:  -  \bigg(0 -  \frac{1}{2k + 1} \bigg)  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

\rm \: =  \: \bigg(\frac{1}{2k + 1} \bigg)  + \displaystyle\int_{0}^{\dfrac{\pi}{2}}\rm   \frac{ {sin}^{2} kx}{sinx}dx \\

[ Because of substituting the value from Step 2 ]

\rm \:  =  \: 1 + \dfrac{1}{3}  + \dfrac{1}{5}  +  -  -  -  + \dfrac{1}{2k + 1} \\

\rm\implies \:P(n) \: is \: true \: for \: n \:  =  \: k \:  +  \: 1 \\

Hence, By the Principle of Mathematical Induction, we get

\rm \: \displaystyle\int_{0}^{ \dfrac{\pi}{2} }\rm  \frac{ {sin}^{2} nx}{sinx} = 1 +  \frac{1}{3} +  \frac{1}{5} +  -  -  +  \frac{1}{2n - 1}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\displaystyle\int\rm sinx \: dx \:  =  \:  -  \: cosx \:  +  \: c \:  \\

\rm \: cos(2n + 1)\dfrac{\pi}{2} = 0 \: where \: n \: is \: integer \\

Similar questions