Prove the following: cosA / 1 - sinA = tan (45 + A/2)
Answers
LHS
= cosA ÷ (1 -
sinA)
= [cosA ÷ (1 - sinA)] * [ (1 + sinA)÷(1 +
sinA) ]
= [cosA * (1 + sinA)] ÷ [(1 - sinA) * (1
+ sinA) ]
= [cosA * (1 + sinA)] ÷ (1-sin²A)
= [cosA * (1 + sinA)] ÷ cos² A
= (1 + sinA)÷ cosA
= [ cos²(A/2) + sin²(A/2)+ 2sin(A/2)cos(A/2) ] ÷ [cos²(A/2) - sin²(A/2)]
= [ cos(A/2) + sin(A/2) ]² ÷ [ {cos(A/2) - sin(A/2)} * {cos(A/2) + sin(A/2)} ]
= [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)]
= { [ cos(A/2) + sin(A/2) ] ÷ [cos(A/2) - sin(A/2)] } * { [1÷ cos(A/2)] ÷[1÷ cos(A/2)] }
= [ 1+ tan(A/2) ] ÷ [ 1-tan(A/2) ]
= [ tan 45° + tan(A/2) ] ÷ [ 1 - tan 45° tan(A/2)
]
= tan (45° + A/2) = RHS (hence proved)
Answer:
1-tan^2A/2
cosA = -----------------
1+tan^2A/2
2tanA/2
sinA = ----------------
1+ tan^2A/2
cosA
=----------
1-sinA
1-tan^2A/2
------------------
1+tan°2A/2
=------------------------------------------
2tanA/2
1- -----------------
1+ tan^2A/2
1- tana^2A/2
---------------------
1+tan^2A
=---------------------------------------------------
1+tan^2A/2 -2tanA/2
-----------------------------------
1+tan^2A/2
(1-tanA/2)(1+tanA/2)
=------------------------------------
( 1-tanA/2)^2
1+ tanA/2
=---------------. {tana= 1 ,tana= 45°}
1 - tanA/2
(45° + tanA/2)