Math, asked by parthu5958, 1 year ago

prove the following:
cot-1 {(xy+1) / (x-y)} + cot-1 {(yz+1) / (y-z)} + cot-1 {(zx+1) / (z-x)} = 0

Answers

Answered by pinquancaro
34

We have to prove:

\cot^{-1}(\frac{xy+1}{x-y})+ \cot^{-1}(\frac{yz+1}{y-z})+ \cot^{-1}(\frac{zx+1}{z-x})=0

Let x = \cot a, y= \cot b , z= \cot c

\cot^{-1}(\frac{\cot a \cot b+1}{\cot a-\cot b})+ \cot^{-1}(\frac{\cot b \cot c+1}{\cot b-\cot c})+ \cot^{-1}(\frac{\cot c \cot a+1}{\cot c-\cot a})

Now, using the trigonometric identity \cot(a-b) = \frac{ \cot a \cot b+1}{\cot b - \cot a}.

\cot^{-1} \cot(b-a)+ \cot^{-1} \cot(c-b)+ \cot^{-1} \cot(a-c)

b-a+c-b+a-c

= 0

Hence, proved

Answered by FelisFelis
6

Answer:

we have to prove that \cot^{-1}(\frac{xy+1}{x-y})+\cot^{-1}(\frac{yz+1}{y-z})+\cot^{-1}(\frac{zx+1}{z-x})=0

Left hand side

\cot^{-1}(\frac{xy+1}{x-y})+\cot^{-1}(\frac{yz+1}{y-z})+\cot^{-1}(\frac{zx+1}{z-x})

Let x=\cot a,\; y=\cot b,\; z=\cot c

Since, by the identity \cot(a-b)=\frac{\cot a\cot b+1}{\cot b-\cot a}

\cot^{-1}\cot(b-a)+\cot^{-1}\cot(c-b)+\cot^{-1}\cot(a-c)

b-a+c-b+a-c

=0

Right hand side

hence proved.

Similar questions