Math, asked by vinaysingh6896, 1 year ago

Prove the following
Cot A-1÷2-sec2A=cotA÷1+tan A

Answers

Answered by MrWantingToKnow
0
The box in blue marks the equations that i used in solving this question.
Attachments:
Answered by MissSolitary
1

 :  \rightarrow \underline {\underline \mathfrak{Required  \: Answer :-}}

---------------------

Prove the following :

 \red{ \tt{ { \huge{ ↳}}:  \:  \: \frac{cot \: A - 1}{2 -  {sec}^{2} \: A }  =  \frac{cot \: A}{1 + tan \: A} }} \\  \\  \\  \tt{L.H.S } :  \rightarrow \blue{ \tt{ \:  \dfrac{ \frac{cos \:A }{sin \: A}  - 1}{1 + 1 -  {sec}^{2} A} }} \\  \\  \\ :  \rightarrow \blue{ \tt{ \:  \frac{ \frac{cos \:A - sin \: A }{sin \:A } }{1 +  {tan}^{2}A } }} \\  \\  \\  :  \rightarrow \blue{ \tt{ \: \frac{ \frac{cos \:A - sin \: A }{sin \: A} }{1 +  \frac{ {sin}^{2}A }{ {cos}^{2}A } }  }} \\  \\  \\  :  \rightarrow \blue{ \tt{ \: \frac{ \frac{cos \: A - sin \: A}{sin \: A} }{ \frac{ {cos}^{2} A +  {sin}^{2}  A}{ {cos}^{2} A} } }} \\  \\  \\   :  \rightarrow \blue{ \tt{ \: \frac{cos \:A - sin \: A }{sin \: A}  \times  \frac{ {cos}^{2}A }{ {cos}^{2}A  +  {sin}^{2} A } }} \\  \\  \\   :  \rightarrow \blue{ \tt{ \: \frac{ \cancel{cos \: A - sin \: A}}{sin \:A }  \times  \frac{ {cos}^{2} A}{(cos \:A + sin \:  A) \cancel{(cos \: A - sin \: A)}}  }} \\  \\  \\ :  \rightarrow \blue{ \tt{ \: \frac{ {cos}^{2}A }{sin \: A(cos \:A + sin \:  A)} }} \\  \\  \\  \\  \tt{ R.H.S  :  \rightarrow } \blue { \tt{ \:  \frac{cot \: A}{1 + tan \: A} }} \\  \\  :  \rightarrow \blue{ \tt{ \:  \frac{ \frac{cos \: A}{sin \: A} }{1 +  \frac{sin \: A}{cos \: A} } }} \\  \\  \\  :  \rightarrow \blue{ \tt{ \: \frac{ \frac{cos \:A }{sin \: A} }{ \frac{cos \: A + sin \:A }{cos \: A} }  }} \\  \\  \\  :  \rightarrow \blue{ \tt{ \:  \frac{cos \: A}{sin \: A}  \times  \frac{cos \: A}{ cos \: A + sin \: A}  }} \\  \\  \\  :  \rightarrow \blue{ \tt{ \:  \frac{ {cos}^{2}A }{sin \: A(cos \: A + sin \:A) } }} \\  \\  \therefore   \tt{ \: L.H.S = R.H.S  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (proved)}

_____________________

@MissSolitary ✌️

_________

Similar questions