Math, asked by FuzzieGirl, 1 year ago

prove the following determinant

please answer me fast, ASAP​

Attachments:

Answers

Answered by BrainlyPopularman
1

Answer:

l.h.s. = 1(a {b}^{2}  - a {c}^{2} ) - 1( {a}^{2} b - b {c}^{2} ) + 1( {a}^{2} c -  {b}^{2} c) \\  \\  = a {b}^{2}  - a {c}^{2}  -  {a}^{2} b + b {c}^{2}  +  {a}^{2} c -  {b}^{2} c\\  \\  = (a {b}^{2}  -  {a}^{2} b) + ( {a}^{2} c -  {b}^{2} c) + (b {c}^{2}   - a {c}^{2} ) \\  \\  =  - ab(a - b) + c(a + b)(a - b) +  -  {c}^{2} (a - b) \\  \\  = (a - b)( - ab + ac + bc -  {c}^{2} ) \\  \\  = (a - b)( - a(b - c) + c(b - c) \\  \\  = (a - b)(b - c)(c - a) \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: hence \: proved

Answered by Anonymous
11

=1(ab2-ac2)-1(a2b-bc2)+1(a2c - ac)

= ab2 - ac2 -a2b +bc2 + a2c - b2c

= (ab2- a2b) + (a2c-b2c) +(bc2- ac2)

= -ab(a-b) +c (a+b)(a-b) - c2(a-b)

= (a-b) (-ab +ac+bc -c2)

= (a-b ) (-a ( b-c) + c(b- c)

= (a- b) ( b-c) ( c- a)

Similar questions