Math, asked by kaavyaba, 1 year ago

Prove the following identity

Attachments:

Answers

Answered by ishanit
0
hey mate,
here is the answer
_______❤________

LHS =

 = >( \frac{ \cos(\theta) - \sin(\theta) + 1 }{ \cos(\theta) + \sin(\theta) - 1 } )

 \frac{ (\cos(\theta) + 1) - \sin(\theta) }{ (\cos(\theta) + \sin(\theta)) - 1 } \times \frac{ (\cos(\theta) + 1) \sin(\theta) }{(\cos(\theta) + \sin(\theta)) + 1}

 = > ( \frac{ (\cos(\theta) + 1) {}^{2} - \sin {}^{2} (\theta) }{( \cos(\theta) + \sin(\theta)) {}^{2} - {1}^{2} } )

 = > \frac{\cos {}^{2}(\theta) + 1 + 2 \cos(\theta) - \sin {}^{2}(\theta) }{ \cos {}^{2}(\theta) + \sin {}^{2} (\theta) + 2 \sin(\theta)\cos(\theta) - 1 }

 = > \frac{ \cos {}^{2} (\theta) + 2 \cos(\theta) + \cos {}^{2} (\theta) }{1 + 2 \sin(\theta) \cos(\theta) - 1}

 = > ( \frac{ 2 \cos(\theta) + 2 \cos {}^{2} (\theta)}{2 \sin(\theta) \cos(\theta) })

 = > (\frac{2 \cos(\theta)(1 + \cos(\theta)) }{2 \sin(\theta) \cos(\theta) } )

 = > (\frac{1 + \cos(\theta) }{ \sin(\theta) } )

 = > \frac{1}{ \sin(\theta) } + \frac{ \cos(\theta) }{ \sin(\theta ) }

 = > \cosec(\theta) + \cot(\theta)

RHS
____________❤__________

HOPE THIS HELPS YOU

please like it and
mark \: \: \: as \: \: \: brainlist
TH@NkS

ishanit: ask if any queries
amatullahabdulmusaww: what i dont get it??
drashti5: this is also a long method!!!
Answered by Balajihari
0
Hope this will help you
Attachments:
Similar questions