Math, asked by yana85, 1 year ago

prove the following identity :-
plz...... hlp me in this question I'll mark you as a

Attachments:

yana85: OK
yana85: now see
yana85: ♥♥♥

Answers

Answered by acestudentt4n15h
1

Proof:

sinA/(secA+tanA-1)+cosA/(cosecA+cotA-1) = 1

=> sinA(cosecA+cotA-1) + cosA(secA+tanA-1)/ (secA+tanA-1)(cosecA+cotA-1) = 1

=>sinAcosecA+sinAcotA- sinA + cosAsecA+cosAtanA-cosA/(secAcosecA+secAcotA-secA+tanAcosecA+tanAcotA-tanA-cosecA-cotA +1)=1

=>sinA.(1/sinA)+sinAcotA-sinA+cosA.(1/cosA)+cosAtanA-cosA/ (secAcosecA+ secAcotA-secA+tanAcosecA+tanA.(1/tanA)-tanA-cosecA-cotA+1)=1

=>1+sinAcotA-sinA+1+cosAtanA-cosA/(secAcosecA+secAcotA-secA+tanAcosecA+1-tanA-cosecA-cotA+1)= 1

=>1+sinA(1/tanA)-sinA+1+cosAtanA-cosA/(1/cosA)(1/sinA)+(1/cosA)(1/tanA)-(1/cosA)+tanA(1/sinA)+1-tanA-(1/sinA)-(1/tanA)+1= 1

=>1+sinA(cosA/sinA)-sinA+ cosA(sinA/cosA)-cosA/(1/sinAcosA)+(1/cosA.sinA/cosA)-(1/cosA)+ sinA/cosA(1/sinA)+1-(sinA/cosA)-(1/sinA)-(cosA/sinA)+1=1

=>1+cosA-sinA+sinA-cosA/(1/sinAcosA)+(1/sinA)-(1/cosA)+(1/cosA)+1-(sinAcosA)-(1/sinA)-(cosA/sinA)+1=1

=>1/(1/sinAcosA)+[(cosA-sinA)/(sinAcosA)]+(1/cosA)+1-{(sin²AcosA-1)/sinA}-(cosA/sinA)+1=1

=>1/(1/sinAcosA)+[(cosA-sinA)/(sinAcosA)]+secA+1-[(sin²AcosA-1)/sinA]-cotA+1=1

=>1/(cosecAsecA)+[(cosA-sinA)/(sinAcosA)]+ secA +1- [(sin²AcosA-1)/sinA]-cotA+1=1

=>1/-1+1+1= 1

=>1/1= 1

:)

Similar questions