Math, asked by gunelkawirinka2288, 1 year ago

Prove the following identity: (Sin A/1+cos A) + (1+cos A/sin A) = 2 cosec A

Answers

Answered by butterfly36
5

Answer:


Step-by-step explanation:

\frac{sinA}{1+cosA} +\frac{1+cosA}{sinA}

= \frac{sin{^2}A + (1+cos^A)^2 }{sinA(1+cosA)}


Since sin²A+cos²A = 1

\frac{(1-cos^2A)+(1+cosA)(1+cosA)}{sinA(1+cosA)}

=\frac{(1+cosA)(1-cosA) + (1+cosA)(1+cosA)}{sinA(1+cosA)}

=\frac{(1+cosA)(1-cosA+1+cosA)}{sinA(1+cosA)} \\\\=\frac{2}{sinA}\\\\\\ =2 cosecA


Hence proved


Hope this helps

Pls vote as brainliest

Similar questions