prove the following question...
![](https://hi-static.z-dn.net/files/d43/eba4cbfe62d883641247b6d04a5fb990.jpg)
Answers
Answer:
2(sin6θ + cos6θ) - 3 (sin4θ + cos4θ) + 1
=2[(sin2θ)3 + (cos2θ)3] -3[(sin2θ)2 + (cos2θ)2]+1
=2[(sin2θ + cos2θ)3 -3sin2θcos2θ (sin2θ + cos2θ)] -3[(sin2θ + cos2θ)2
-2sin2θcos2θ]+1
The algebraic identity
a3 + b3 = (a+b)3 - 3ab(a+b) and
a2 + b2 = (a+b)2 - 2ab
are used in the above step where
a = sin2θ and b = cos2θ.
writing sin2θ + cos2θ = 1, we have
= 2[1-3 sin2θ cos2θ] -3[-2 sin2θcos2θ] + 1
= 2-6 sin2θcos2θ -3 + 6 sin2θcos2θ + 1
= -3+3=0
HOPE U LIKE IT PLZ MARK IT AS THE BRAINLIEST
Prove the following :
can be rewritten as
We know,
So, using this identity, we get
We know,
So, using this identity, we get
We know,
So, Replace 1 by this identity, we get
We know,
Hence,
Additional Information:-
Relationship between sides and T ratios
sin θ = Opposite Side/Hypotenuse
cos θ = Adjacent Side/Hypotenuse
tan θ = Opposite Side/Adjacent Side
sec θ = Hypotenuse/Adjacent Side
cosec θ = Hypotenuse/Opposite Side
cot θ = Adjacent Side/Opposite Side
Reciprocal Identities
cosec θ = 1/sin θ
sec θ = 1/cos θ
cot θ = 1/tan θ
sin θ = 1/cosec θ
cos θ = 1/sec θ
tan θ = 1/cot θ
Co-function Identities
sin (90°−x) = cos x
cos (90°−x) = sin x
tan (90°−x) = cot x
cot (90°−x) = tan x
sec (90°−x) = cosec x
cosec (90°−x) = sec x
Fundamental Trigonometric Identities
sin²θ + cos²θ = 1
sec²θ - tan²θ = 1
cosec²θ - cot²θ = 1