Math, asked by surabhi2377, 10 months ago

prove the following:

(sinA-secA)² +(cosA-cosecA)²=(1-secA.cosecA)​

Answers

Answered by Chitrayogee
4

mark my answer as brainliest and follow me for clarifying more doubts.

Attachments:
Answered by sandy1816
1

( {sina - seca})^{2}  + ( {cosa - coseca})^{2}  \\  \\  = ( { \frac{sinacosa - 1}{cosa} })^{2}  + ( { \frac{sinacosa - 1}{sina} })^{2}  \\  \\  =  \frac{( {sinacosa - 1})^{2} }{ {cos}^{2}a }  +  \frac{( {sinacosa - 1})^{2} }{ {sin}^{2}a }  \\  \\  = ( {1 - sinacosa})^{2} ( \frac{1}{ {cos}^{2}a }  +  \frac{1}{ {sin}^{2} a} ) \\  \\  = ( {1 - sinacosa})^{2} ( \frac{1}{ {sin}^{2}a {cos}^{2} a }  \\  \\  = ( { \frac{1 - sinacosa}{sinacosa} })^{2}  \\  \\  = ( {secacoseca - 1)}^{2}  \\  \\  = ( {1 - secacoseca)}^{2}

Similar questions