Prove the following
tan ^2 x - sin ^2 x = sin ^2 x sin ^2 x
Answers
Answered by
0
LHS = tan²x - sin²x
=sin²x/cos²x - sin²x
= sin²x( 1 - cos²x)/cos²x
[use, sin²x = 1- cos²x ]
= sin²x.sin²x/cos²x
= {sin²x/cos²x}.sin²x
=tan²x.sin²x = RHS
=sin²x/cos²x - sin²x
= sin²x( 1 - cos²x)/cos²x
[use, sin²x = 1- cos²x ]
= sin²x.sin²x/cos²x
= {sin²x/cos²x}.sin²x
=tan²x.sin²x = RHS
tokaians:
not clear
Similar questions