Prove the following
Answers
Answered by
3
Answer:
Correct option is
D
π−2x
We have,
⇒cot−1(1−sinx−1+sinx1−sinx+1+sinx)
⇒cot−1((1−sinx)−(1+sinx)(1−sinx+1+sinx)2)
⇒cot−1(1−sinx−1−sinx1−sinx+1+sinx+21−sin2x)
⇒cot−1(−2sinx2+2cos2x)
⇒cot−1(−sinx1+cosx)
⇒cot−1
Answered by
4
Answer:
We have,
⇒cot−1(1−sinx−1+sinx1−sinx+1+sinx)
⇒cot−1((1−sinx)−(1+sinx)(1−sinx+1+sinx)2)
⇒cot−1(1−sinx−1−sinx1−sinx+1+sinx+21−sin2x)
⇒cot−1(−2sinx2+2cos2x)
⇒cot−1(−sinx1+cosx)
⇒cot−1⎝⎛−2sin2
Attachments:
Similar questions
Math,
5 hours ago
Science,
5 hours ago
Math,
9 hours ago
Business Studies,
9 hours ago
Political Science,
8 months ago
Hindi,
8 months ago