prove the following trigonometric identitie
Attachments:
Answers
Answered by
0
Heya
Here is your answer
_____________________________________________________________
(sin A + cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A
opening the identity (a + b)² = a² + b² + 2ab
sin²A + cosec²A + 2*sinA*cosecA + cos²A + sec²A + 2*cosA*secA = R.H.S
We know that:
sin²A + cos²A = 1
cosec²A = 1 + cot²A
sec²A = 1 + tan²A
sinA * cosecA = 1
cosA * secA = 1
Putting and doing all the mentioned things above
1 + 1 + 1 + 2 + 2 + cot²A + tan²A = RHS
7 + cot²A + tan²A = 7 + cot²A + tan²A
Hence Proved
____________________________________________________________
Hope this helps! ^_^
Here is your answer
_____________________________________________________________
(sin A + cosec A)² + (cos A + sec A)² = 7 + tan²A + cot²A
opening the identity (a + b)² = a² + b² + 2ab
sin²A + cosec²A + 2*sinA*cosecA + cos²A + sec²A + 2*cosA*secA = R.H.S
We know that:
sin²A + cos²A = 1
cosec²A = 1 + cot²A
sec²A = 1 + tan²A
sinA * cosecA = 1
cosA * secA = 1
Putting and doing all the mentioned things above
1 + 1 + 1 + 2 + 2 + cot²A + tan²A = RHS
7 + cot²A + tan²A = 7 + cot²A + tan²A
Hence Proved
____________________________________________________________
Hope this helps! ^_^
Similar questions