Math, asked by soyngjit1511, 11 months ago

Prove the following trigonometric identities:
1+cosθ-sin²θ/sinθ(1+cosθ)=cotθ

Answers

Answered by harendrachoubay
3

The identity \dfrac{1+\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}=\cot \theta , proved.

Step-by-step explanation:

To prove that, the identity: \dfrac{1+\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}=\cot \theta.

L.H.S. = \dfrac{1+\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}

= \dfrac{(1-\sin^2 \theta)+\cos \theta}{\sin \theta(1+\cos \theta)}

Using the trigonometric identity,

\sin^2 A+\cos^2 A = 1

\cos^2 A=1-\sin^2 A

= \dfrac{\cos^2 \theta+\cos \theta}{\sin \theta(1+\cos \theta)}

Taking \cos \theta as common in numerator part, we get

= \dfrac{\cos \theta(1+\cos \theta)}{\sin \theta(1+\cos \theta)}

= \dfrac{\cos \theta}{\sin \theta}

Using the trigonometric identity,

\cot A=\dfrac{\cos A}{\sin A}

= \cot \theta

= R.H.S., proved,

Thus, the identity \dfrac{1+\cos \theta-\sin^2 \theta}{\sin \theta(1+\cos \theta)}=\cot \theta , proved.

Similar questions