Prove the following trigonometric identities:
1/secA+tanA-1/cosA-1/cosA=1/cosA-1/secA-tanA
Answers
Answered by
0
The correct question is,
Prove the following trigonometric identities:
1/secA+tanA-1/cosA=1/cosA-1/secA-tanA
Hence it is proved that 1/secA+tanA-1/cosA=1/cosA-1/secA-tanA
Given,
1/secA+tanA-1/cosA-1/cosA=1/cosA-1/secA-tanA
Consider,
1/secA+tanA
rationalizing the above factor, we get,
1/secA+tanA = secA-tanA
Now, we have,
LHS
1/secA+tanA-1/cosA
= secA-tanA-1/cosA
= secA-tanA-secA
= secA -(tanA+secA)
= secA -(tanA+secA) × [(tanA-secA) / (tanA-secA)]
= secA -(tan^2A-sec^2A) / (tanA-secA)
= 1/cosA - 1/secA-tanA
RHS
Hence proved.
Similar questions