Prove the following trigonometric identities. (1 + cot A − cosec A) (1 + tan A + sec A) = 2
Answers
Answer with Step-by-step explanation:
Given : (1 + cot A − cosec A) (1 + tan A + sec A) = 2
LHS : (1 + cot A − cosec A) (1 + tan A + sec A)
= (1 + cos A/sinA - 1/sinA) (1 + sinA/cosA + 1/cosA)
[By using the identity, cotθ = cosθ/sinθ , tanθ = sinθ/cosθ ] & [ cosecθ = 1/sinθ, secθ = 1/cosθ]
= {(sinA + cos A - 1)/sinA} {(cosA + sinA + 1)/cosA)}
[By taking LCM]
= {(sinA + cos A - 1) {(cosA + sinA + 1)}/ sinAcosA
= {(sinA + cos A)² - 1²) }/ sinA cosA
[By using identity , (a + b) (a - b) = a² - b²]
= {(sin²A + cos ²A + 2sinAcosA) - 1)} / sinA cosA
[By using identity , (a + b)² = a² + 2ab + b²]
= {(sin²A + cos ²A) + 2sinAcosA - 1} / sinA cosA
= 1 + 2sinAcosA - 1 / sinA cosA
[By using the identity , sin² θ + cos² θ = 1]
= 2sinAcosA / sinA cosA
= 2
(1 + cot A − cosec A) (1 + tan A + sec A) = 2
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
Answer:
It is Proved !!!
____________________________
Step-by-step explanation:
Given :
To Find :
- Prove the trigonometric Identity.
Solution :
Given in Attachment.
____________________________