Math, asked by Amarsha5713, 10 months ago

Prove the following trigonometric identities:
1+secθ/secθ=sin²θ/1-cosθ

Answers

Answered by MaheswariS
1

\text{Consider,}

\displaystyle\frac{sin^2\theta}{1-cos\theta}

\text{Using,}\bf\,sin^2\theta=1-cos^2\theta

=\displaystyle\frac{1-cos^2\theta}{1-cos\theta}

=\displaystyle\frac{1^2-cos^2\theta}{1-cos\theta}

\text{Using,}\bf\,a^2-b^2=(a-b)(a+b)

=\displaystyle\frac{(1-cos\theta)(1+cos\theta)}{1-cos\theta}

=\displaystyle\,1+cos\theta

=\displaystyle\,1+\frac{1}{sec\theta}

=\displaystyle\,\frac{sec\theta+1}{sec\theta}

\therefore\bf\,\displaystyle\,\frac{1+sec\theta}{sec\theta}=\frac{sin^2\theta}{1-cos\theta}

Find more:

Prove that (tanA + secA ÷ cosecA + cotA)(tanA - secA ÷ cosecA - cotA) = 2(tanA×cosecA - cotA×secA)

https://brainly.in/question/8676527#

Similar questions