Prove the following trigonometric identities:
(1+sinθ-cosθ/1+sinθ+cosθ)²=1-cosθ/1+cosθ
Answers
Answered by
0
Answer:
i don't know
hahahahahahahahahahahahahahaha
Answered by
0
(1+sinθ-cosθ / 1+sinθ+cosθ)² = 1-cosθ / 1+cosθ proved
Step-by-step explanation:
To prove: (1+sinθ-cosθ / 1+sinθ+cosθ)² = 1-cosθ / 1+cosθ
Proof: Sin²θ = 1 - Cos²θ
Sinθ. Sinθ = (1 + Cosθ) (1 - Cosθ)
Sinθ/(1 + Cosθ) = (1 - Cosθ)/Sinθ
By the theorem of equal ratios, we get:
(1 - Cosθ)/Sinθ = (Sinθ + 1 -Cosθ) /(1+ cosθ + Sinθ)
Squaring on both sides, we get:
[(1 - Cosθ)/Sinθ]² = (1+sinθ-cosθ / 1+sinθ+cosθ)² = LHS
= (1 - Cosθ)²/ Sin²θ
= (1 - Cosθ)²/ (1 - cos²θ)
= (1 - Cosθ)(1 - Cosθ) / (1 - Cosθ)(1 + Cosθ)
= (1- Cosθ)/ (1 + Cosθ)
= RHS
RHS = LHS
Hence proved.
Similar questions