Math, asked by ammuKochu81601, 10 months ago

Prove the following trigonometric identities:
(secA+tanA-1)(secA-tanA+1)=2tanA

Answers

Answered by harendrachoubay
0

(\sec A+\tan A-1)(\sec A-\tan A+1)=2\tan A, proved.

Step-by-step explanation:

Prove that the identity:

(\sec A+\tan A-1)(\sec A-\tan A+1)=2\tan A.

L.H.S. = (\sec A+\tan A-1)(\sec A-\tan A+1)

= \sec A(\sec A-\tan A+1)+\tan A(\sec A-\tan A+1)-1(\sec A-\tan A+1)

= \sec^2 A-\sec A\tan A+\sec A+\tan A\sec A-\tan^2 A+\tan A-\sec A+\tan A-1

= \sec^2 A-\tan^2 A+\tan A+\tan A-1

Using the trigonometric identity,

\sec^2 A-\tan^2 A = 1

= 1+\tan A+\tan A-1

= 2\tan A

= R.H.S., proved.

Thus, (\sec A+\tan A-1)(\sec A-\tan A+1)=2\tan A, proved.

Answered by Shreyanshijaiswal81
0

(sec A + tan A −1 )(sec A tan A + 1)=2tan A , proved.

[Prove that the identity:

(\sec A+\tan A-1)(\sec A-\tan A+1)=2\tan A.

L.H.S. = (\sec A+\tan A-1)(\sec A-\tan

\implies \sec A(\sec A-\tan A+1)+\tan A(\sec A-\tan A+1)-1(\sec A-\tan A+1)

\implies \sec^2 A-\sec A\tan A+\sec A+\tan A\sec A-\tan^2 A+\tan A-\sec A+\tan A-1s

\implies \sec^2 A-\tan^2 A+\tan A+\tan A-

Using the trigonometric identity,

\sec^2 A-\tan^2 Asec

\implies 1+\tan A+\tan A-11+tanA+tanA−1

\implies 2\tan A2tanA

= R.H.S., proved.

Thus, (\sec A+\tan A-1)(\sec A-\tan A+1)=2\tan A, proved.

Similar questions