Prove the following trigonometric identities:
(1+tan²A)+(1+1/tan²A)=1/sin²A-sin4A
Answers
Answered by
0
Step-by-step explanation:
heyyyyyyyyyyyyyuyyyy
Attachments:
Answered by
0
(1 + tan²A) + (1 + 1/tan²A) = 1 / sin²A - sin^4 A proved
Step-by-step explanation:
To prove: (1 + tan²A) + (1 + 1/tan²A) = 1 / sin²A - sin^4 A
Proof:
LHS (1 + tan²A) + (1 + 1/tan²A) = (1 + sin²A/cos²A) + (1 + 1/(sin²A/cos²A))
= (cos²A + sin²A)/cos²A + (cos²A + sin²A)/sin²A
= 1/cos²A + 1/sin²A
= 1/cos²A.sin²A
= 1/ [(1 - sin²A) sin²A]
= 1/ (sin²A - Sin^4 A)
LHS = RHS
Hence proved.
Similar questions