Math, asked by maskiez41611, 9 months ago

Prove the following trigonometric identities:
cosecA/cosecA-1+cosecA/cosecA+1=2sec²A

Answers

Answered by DeenaMathew
0
  • cosecA/cosecA-1+cosecA/cosecA+1=2sec²A
  • L.H.S. = cosecA [1/cosecA-1 + 1/cosecA+1]
  • =cosecA [2cosecA/(cosec²A-1)]
  • using the identity, 1+cot²A=cosec²A
  • =cosecA [2cosecA/cot²A]
  • =2cosec²A/cot²A
  • put cosecA=1/sinA and cotA=cosA/sinA we get,
  • =2[(1/sin²A)×(sin²A/cos²A)]
  • sin²A gets cancelled and we get (1/cos²A)=sec²A
  • L.H.S.= 2sec²A=R.H.S.
Answered by harendrachoubay
1

The trigonometric identity, \dfrac{\csc A}{\csc A-1} -\dfrac{\csc A}{\csc A+1} =\sec^2 A, proved.

Step-by-step explanation:

To prove that, the trigonometric identity:

\dfrac{\csc A}{\csc A-1} -\dfrac{\csc A}{\csc A+1} =\sec^2 A

L.H.S. = \dfrac{\csc A}{\csc A-1} -\dfrac{\csc A}{\csc A+1}

= \dfrac{\csc A(\csc A+1)+\csc A(\csc A-1)}{(\csc A-1)(\csc A+1)}

= \dfrac{\csc^2 A+\csc A+\csc^2 A-\csc A}{(\csc A-1)(\csc A+1)}

Using the algebraic identity,

a^{2} -b^{2} = (a + b)(a - b)

= \dfrac{\csc^2 A+\csc^2 A}{\csc^2 A-1^2}

= \dfrac{2\csc^2 A}{\csc^2 A-1}

Using the trigonometric identity,

\csc^2 A-\cot^2 A = 1

\cot^2 A=\csc^2 A-1

= \dfrac{2\csc^2 A}{\cot^2 A}

Using the trigonometric identity,

\csc A=\dfrac{1}{\sin A} and \cot A=\dfrac{\cos A}{\sin A}

= \dfrac{2\dfrac{1}{\sin^2 A} }{\dfrac{\cos^2 A}{\sin^2 A}}}

= \dfrac{2}{\cos^2 A}}

= \sec^2 A

= R.H.S., proved.

Thus, the trigonometric identity, \dfrac{\csc A}{\csc A-1} -\dfrac{\csc A}{\csc A+1} =\sec^2 A, proved.

Similar questions