Math, asked by KunalBhansali47121, 11 months ago

Prove the following trigonometric identities:
cosAcosecA-sinAsecA/cosA+sinA=cosecA-secA

Answers

Answered by MaheswariS
0

\text{Consider,}

\displaystyle\frac{cosA\;cosecA-sinA\;secA}{cosA+sinA}

=\displaystyle\frac{cosA(\frac{1}{sinA})-sinA(\frac{1}{cosA})}{cosA+sinA}

=\displaystyle\frac{\frac{cosA}{sinA}-\frac{sinA}{cosA}}{cosA+sinA}

=\displaystyle\frac{\frac{cos^2A-sin^2A}{sinA\;cosA}}{cosA+sinA}

=\displaystyle\frac{\frac{(cosA-sinA)(cosA+sinA)}{sinA\;cosA}}{cosA+sinA}

=\displaystyle\frac{cosA-sinA}{sinA\;cosA}

=\displaystyle\frac{cosA}{sinA\;cosA}-\frac{sinA}{sinA\;cosA}

=\displaystyle\frac{1}{sinA}-\frac{1}{cosA}

=\displaystyle\;cosecA-secA

\therefore\bf\displaystyle\frac{cosA\;cosecA-sinA\;secA}{cosA+sinA}=cosecA-secA

Find more:

1.SinA+sin3A/cosA+cos 3A=tan2A prove​

https://brainly.in/question/10513680#

2.Cos 10a + cos 8a + 3cos 2a + 3cos 4a = 8cos a cos^3 3a

https://brainly.in/question/4290873

Similar questions