Math, asked by vivekbhardwaj9637, 11 months ago

Prove the following trigonometric identities:
(1+cotA-cosecA)(1+tanA+secA)=2

Answers

Answered by dheerajk1912
0

Step-by-step explanation:

  • We know that

        \mathbf{\cot A=\frac{\cos A}{\sin A}}

        \mathbf{\tan A=\frac{\sin A}{\cos A}}

        \mathbf{\csc A=\frac{1}{\sin A}}

        \mathbf{\sec A=\frac{1}{\cos A}}

        \mathbf{\sin^{2} A+\cos^{2} A=1 }                   ...1)

        \mathbf{X^{2}-Y^{2}=(X+Y)(X-Y)}     ...2)

        \mathbf{(X+Y)^{2}=X^{2}+Y^{2}+2XY}    ...3)

  • From L.H.S

        \mathbf{(1+\cot A-\csc A)(1+\tan A+\sec A)}

        \mathbf{\left ( 1+\frac{\cos A}{\sin A}-\frac{1}{\sin A} \right )\left ( 1+\frac{\sin A}{\cos A}+\frac{1}{\cos A} \right )}

        \mathbf{\frac{(\sin A+\cos A-1)}{\cos A}\frac{(\sin A+\cos A+1)}{\sin A}}  

  • By using identity of equation 2)

        \mathbf{\frac{(\sin A+\cos A)^{2}-1^{2}}{\sin A \cos A}}

  • By using identity of equation 3)

        \mathbf{\frac{\sin^{2} A+\cos^{2} A+2\sin A \cos A-1}{\sin A \cos A}}

  • By using equation 1)

       \mathbf{\frac{1+2\sin A \cos A-1}{\sin A \cos A}}

       \mathbf{\frac{2\sin A \cos A}{\sin A \cos A}}

       2 = R.H.S

Similar questions