Math, asked by Ambikarajawat70011, 1 year ago

Prove the following trigonometric identities:
(cosecθ-secθ)(cotθ-tanθ)=(cosecθ+secθ)(secθcosecθ-2)

Answers

Answered by ashishks1912
1

The equality is (cosec\theta-sec\theta)(cot\theta-tan\theta)=(cosec\theta+sec\theta)(sec\theta cosec\theta-2)

is proved

Step-by-step explanation:

  • To prove that (cosec\theta-sec\theta)(cot\theta-tan\theta)=(cosec\theta+sec\theta)(sec\theta cosec\theta-2)
  • That is prove that LHS=RHS
  • Let take LHS
  • (cosec\theta-sec\theta)(cot\theta-tan\theta)
  • (\frac{1}{sin\theta}-\frac{1}{cos\theta})(\frac{cos\theta}{sin\theta}-\frac{sin\theta}{cos\theta})
  • (\frac{1(cos\theta)-1(sin\theta)}{sin\theta cos\theta})(\frac{cos\theta(cos\theta)-sin\theta(sin\theta)}{sin\theta cos\theta})
  • (\frac{cos\theta-sin\theta}{sin\theta cos\theta})(\frac{cos^2\theta-sin^2\theta}{sin\theta cos\theta})
  • (\frac{cos\theta-sin\theta}{sin\theta cos\theta})(\frac{(cos\theta-sin\theta)(cos\theta+sin\theta)}{sin\theta cos\theta})
  • (\frac{cos\theta-sin\theta)((cos\theta-sin\theta)(cos\theta+sin\theta))}{sin^2\theta cos^2\theta} ( by using the identity (a^2-b^2)=(a+b)(a-b) )

\frac{(cos\theta-sin\theta)^2(cos\theta+sin\theta)}{sin^2\theta cos^2\theta}=LHS

  • Now RHS (cosec\theta+sec\theta)(sec\theta cosec\theta-2)
  • =\frac{1}{sin\theta}+\frac{1}{cos\theta})(\frac{1}{cos\theta}\frac{1}{sin\theta}-2)
  • =(\frac{cos\theta+sin\theta}{sin\theta cos\theta})(\frac{1-2sin\theta cos\theta}{cos\theta sin\theta})
  • =(\frac{cos\theta+sin\theta}{sin\theta cos\theta})(\frac{cos^2\theta+sin^2\theta-2sin\theta cos\theta}{cos\theta sin\theta})( by using the identity cos^2x+sin^2x=1 )
  • =(\frac{cos\theta+sin\theta}{sin\theta cos\theta})(\frac{(cos\theta+sin\theta)^2}{cos\theta sin\theta})    ( by using the identity (a+b)^2=a^2+2ab+b^2 )

=\frac{(cos\theta-sin\theta)^2(cos\theta+sin\theta)}{sin^2\theta cos^2\theta}=RHS

Comparing LHS and RHS we get

LHS=RHS

Therefore (cosec\theta-sec\theta)(cot\theta-tan\theta)=(cosec\theta+sec\theta)(sec\theta cosec\theta-2)

Similar questions