Prove the following trigonometric identities:
sinA/secA+tanA-1+cotA/cosecA+cotA-1=1
Answers
sinA/(secA+tanA-1+cosA)/(cosecA+cotA-1)=1
Step-by-step explanation:
Correction
sinA/(secA+tanA-1+cosA)/(cosecA+cotA-1)=1
LHS
= SinA/(secA+tanA-1) + cosA/(cosecA+cotA-1)
= SinA/(1/CosA + SinA/CosA - 1) + cosA/(1/SinA+cosA/SinA-1)
= SinACosA/(1 + SinA - CosA) + CosASinA/(1 + CosA - SinA)
= SinACosA/( 1 + (SinA - CosA) + CosASinA (1 - (SinA - CosA))
= SinACosA(1 - (SinA - CosA) + 1 + (SinA - CosA) )/( 1² - (SinA - CosA)²)
= SinACosA(2)/(1 - (Sin²A + Cos²A - 2SinACosA)
= 2SinACosA/(1 - (1 - 2SinACosA)
= 2SinACosA/2SinACosA
= 1
= RHS
QED
Proved
sinA/(secA+tanA-1+cosA)/(cosecA+cotA-1)=1
Learn more:
Can you solve this question Mr brain - Brainly.in
https://brainly.in/question/7808139
SinA/1-cosA - 1-cosA/SinA
https://brainly.in/question/8431811
Correction
sinA/(secA+tanA-1+cosA)/(cosecA+cotA-1)=1
LHS
= SinA/(secA+tanA-1) + cosA/(cosecA+cotA-1)
= SinA/(1/CosA + SinA/CosA - 1) + cosA/(1/SinA+cosA/SinA-1)
= SinACosA/(1 + SinA - CosA) + CosASinA/(1 + CosA - SinA)
= SinACosA/( 1 + (SinA - CosA) + CosASinA (1 - (SinA - CosA))
= SinACosA(1 - (SinA - CosA) + 1 + (SinA - CosA) )/( 1² - (SinA - CosA)²)
= SinACosA(2)/(1 - (Sin²A + Cos²A - 2SinACosA)
= 2SinACosA/(1 - (1 - 2SinACosA)
= 2SinACosA/2SinACosA
= 1
= RHS
QED
Proved
sinA/(secA+tanA-1+cosA)/(cosecA+cotA-1)=1