Prove the following trigonometric identities. If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ − 3 cos θ = ± 3.
Answers
Answered by
3
Answer with Step-by-step explanation:
Given :
(3 sinθ + 5cosθ)² = 5²
Squaring on both sides.
(3sinθ)² + (5cosθ)² + 2× 3sinθ 5cosθ = 25
[a + b= a² + b² + 2ab]
9sin²θ + 25cos²θ + 30sinθcosθ = 25
9 (1 - cos²θ) + 25(1- sin²θ) + 30 sinθcosθ = 25
[By using an identity, (1- cos²θ) = sin²θ , (1- sin²θ) = cos²θ]
9 - 9cos²θ + 25 - 25sin²θ + 30 sinθcosθ = 25
9 + 25 - (9cos²θ + 25sin²θ - 30sinθcosθ) = 25
34 - (9cos²θ + 25sin²θ - 30sinθcosθ) = 25
- (25sin²θ + 9cos²θ - 30sinθcosθ) = 25 - 34
(25sin²θ + 9cos²θ - 30 sinθcosθ) = 9
(5sinθ - 3cosθ)² = 9
[By using identity , a² - 2ab + b² = (a - b)² ]
(5sinθ - 3cosθ) = √9
(5sinθ - 3cosθ) = ±3
L.H.S = R.H.S
HOPE THIS ANSWER WILL HELP YOU…
Answered by
1
hope it helps☺️
Similar questions