Prove the following trigonometric identities.
Answers
Answered by
0
Answer with Step-by-step explanation:
Given :
tan²A/(1+ tan²A) + cot²A/(1 + cot²A) = 1
LHS : tan²A/(1 + tan²A) + cot²A/(1 + cot²A)
= (sin²A/cos²A) /[1 + (sin²A/cos²A) + + (cos²A/sin²A) / [(1 + (cos²A/sin²A)]
[By using the identity, cotθ = cosθ/sinθ , tanθ = sinθ/cosθ ]
= (sin²A/cos²A) /[(cos²A+ sin²A)/cos²A) + (cos²A/sin²A) / [(sin²A + cos²A)/sin²A)]
= (sin²A/cos²A) × cos²A/(cos²A+ sin²A) + (cos²A/sin²A) × sin²A / (sin²A + cos²A)
= [(sin²A /(cos²A+ sin²A)] + [(cos²A / (sin²A + cos²A)]
= (sin²A + cos²A)/(cos²A + sin²A)
= 1
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU...
Answered by
0
Answer:
brainlist brainlist brainlist brainlist brainlist brainlist brainlist brainlist brainlist
Attachments:
Similar questions