Prove the following trigonometric identities.
Answers
Answer with Step-by-step explanation:
Given :
tanA/(1 + secA) − tanA/(1 − secA) = 2 cosec A
LHS : (sinA/cosA)/(1 + 1/cosA) − (sinA/cosA)/ (1 - 1/cosA)
[By using an identity, tanθ = sinθ/cosθ ] [secθ = 1/cosθ]
= (sinA/cosA)/[(cosA + 1)/ cosA] − (sinA/cosA)/ [(cosA − 1) /cosA]
[By taking LCM]
= [(sinA/cosA) × cosA /(cosA + 1)] − [(sinA/cosA) × cosA / (cosA − 1)]
= sinA/(cosA + 1) − sinA/(cosA − 1)
= sinA[(1/cosA+ 1) − (1/ cosA−1)]
[Taking sinA common ]
= sinA(cosA − 1 − cosA − 1) / (cos²A−1)
[By taking LCM] & [By using identity , (a + b) (a - b) = a² - b²]
= sinA(−2)/(−sin²A)
[By using an identity, (1- cos²θ) = sin²θ]
= 2/sinA
= 2 × 1/sinA
= 2 cosec A
[cosecA = 1/sinA]
tanA/(1 + secA) − tanA/(1 − secA) = 2 cosec A
L.H.S = R.H.S
Hence Proved..
HOPE THIS ANSWER WILL HELP YOU…
Answer:
Hey mate plzz refer to the attachment,
In simple solution,,
Mark as brainleist