Math, asked by belismakatwal, 4 months ago

Prove the following trigonometric ratios: (its urgent)

Attachments:

Answers

Answered by amansharma264
9

EXPLANATION.

(1) = Cos²∅ - Cos²∅Sin²∅ = Cos⁴∅.

As we know that,

⇒ Sin²∅ = 1 - Cos²∅.

Put the Formula in equation, we get.

⇒ Cos²∅ - Cos²∅(1 - Cos²∅).

⇒ Cos²∅ - Cos²∅ + Cos⁴∅.

⇒ Cos⁴∅.

Hence L.H.S = R.H.S.

(2) = (1 - Cos²∅)(1 + Tan²∅) = Tan²∅.

As we know that,

⇒ 1 - Cos²∅ = Sin²∅.

⇒ (Sin²∅)(1 + Tan²∅).

⇒ Sin²∅ + Sin²∅Tan²∅.

⇒ Sin²∅ + Sin²∅.Sin²∅/Cos²∅.

⇒ Sin²∅ + Sin⁴∅/Cos²∅.

Taking L.C.M in the equation, we get.

⇒ Sin²∅.Cos²∅ + Sin⁴∅/Cos²∅.

⇒ Sin²∅(Cos²∅ + Sin²∅)/Cos²∅.

As we know that,

⇒ Cos²∅ + Sin²∅ = 1.

⇒ Sin²∅/Cos²∅.

⇒ Tan²∅.

Hence, L.H.S = R.H.S.

(3) = (1 + Cot²A)(1 - Sin²A) = Cot²A.

As we know that,

⇒ 1 - Sin²∅ = Cos²∅.

⇒ (1 + Cot²A)(Cos²A).

⇒ Cos²A + Cot²ACos²A.

⇒ Cos²A + Cos²A.Cos²A/Sin²A.

Taking L.C.M in equation, we get.

⇒ Cos²A.Sin²A + Cos⁴ A/Sin²A.

⇒ Cos²A(Sin²A + Cos²A)/Sin²A.

As we know that,

⇒ Sin²∅ + Cos²∅ = 1.

⇒ Cos²A/Sin²A.

⇒ Cot²A.

Hence, L.H.S = R.H.S.

(4) = Sin²∅ + Sin²∅.Cot²∅ = 1.

As we know that,

⇒ Cot²∅ = Cosec²∅ - 1.

⇒ Sin²∅ + Sin²∅(Cosec²∅ - 1).

⇒ Sin²∅ + Sin²∅.Cosec²∅ - Sin²∅.

⇒ Cosec²∅ = 1/Sin²∅.

⇒ Sin²∅ + 1 - Sin²∅.

⇒ 1.

Hence, L.H.S = R.H.S.

(5) = Sin∅(1 + Cot²∅) = Cosec∅.

As we know that,

⇒ 1 + Cot²∅ = Cosec²∅.

⇒ Sin∅(Cosec²∅).

⇒ Cosec²∅ = 1/Sin²∅.

⇒ Sin∅/Sin²∅.

⇒ 1/Sin∅.

⇒ Cosec∅.

Hence, L.H.S = R.H.S.

(6) = Cos A(1 + Tan²A) = Sec A.

As we know that,

⇒ 1 + Tan²∅ = Sec²∅.

⇒ Cos A(Sec²A).

⇒ Sec²A = 1/Cos²A.

⇒ Cos A/Cos²A.

⇒ 1/Cos A.

⇒ Sec A.

Hence, L.H.S = R.H.S.

(7) = (Sin x - Cos x)² = 1 - 2Sinx.Cosx.

As we know that,

⇒ (a - b)² = a² + b² - 2ab.

⇒ (Sin²x + Cos²x - 2Sinx.Cosx).

⇒ Sin²x + Cos²x = 1.

⇒ 1 - 2Sinx.Cosx.

Hence, L.H.S = R.H.S.

(8) = (1 - Sin²A)Cosec²A = Cot²A.

As we know that,

⇒ 1 - Sin²∅ = Cos²∅.

⇒ Cos²A.Cosec²A.

⇒ Cosec²A = 1/Sin²A.

⇒ Cos²A/Sin²A.

⇒ Cot²A.

Hence, L.H.S = R.H.S.

(9) = Cos∅.√1 + Cot²∅ = √Cosec²∅ - 1.

As we know that,

⇒ 1 + Cot²∅ = Cosec²∅.

⇒ Cosec²∅ - 1 = Cot²∅.

⇒ Cos∅.√Cosec²∅. = √Cot²∅.

⇒ Cos∅ Cosec∅ = Cot∅.

⇒ Cosec∅ = 1/Sin∅.

⇒ Cot∅ = Cos∅/Sin∅.

⇒ Cos∅/Sin∅ = Cos∅/Sin∅.

⇒ Cot∅ = Cot∅.

Hence, L.H.S = R.H.S.

(10) = Cos∅ Cosec∅.√Sec²∅ - 1 = 1.

As we know that,

⇒ Sec²∅ - 1 = Tan²∅.

⇒ Cos∅ Cosec∅ .√Tan²∅.

⇒ Cos∅ Cosec∅. Tan∅.

⇒ Cot∅ Tan∅.

⇒ Cot∅ = Cos∅/Sin∅.

⇒ Tan∅ = Sin∅/Cos∅.

⇒ Cos∅/Sin∅ X Sin∅/Cos∅.

⇒ 1.

Hence, L.H.S = R.H.S.


Anonymous: Woah..! Really amazing have no words for this answer too ♥️ (:
Answered by mathdude500
6

\bf \:\large \red{AηsωeR : a} ✍

\bf \:LHS \:  {cos}^{2} θ -  {cos}^{2} θ  \times {sin}^{2} θ

\bf \:  ⟼  {cos}^{2} θ(1 -  {sin}^{2} θ)

\bf \:  ⟼  {cos}^{2} θ \times  {cos}^{2} θ

\bf \:  ⟼  {cos}^{4} θ

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : b} ✍

\bf \:LHS\  ⟼(1 -  {cos}^{2}θ)(1 +  {tan}^{2}  θ)

\bf \:  ⟼  {sin}^{2} θ \times  {sec}^{2} θ

\bf \:  ⟼ \dfrac{ {sin}^{2} θ}{ {cos}^{2}θ }

\bf \:  ⟼  {tan}^{2} θ

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : c} ✍

\bf \:LHS  ⟼(1 +  {cot}^{2} A)(1 -  {sin}^{2} A)

\bf \:  ⟼  {cosec}^{2} A \times  {cos}^{2} A

\bf \:  ⟼ \dfrac{ {cos}^{2}A }{ {sin}^{2}A }

\bf \:  ⟼  {cot}^{2} A

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : d} ✍

\bf \:LHS  ⟼ {sin}^{2} θ +  {sin}^{2} θ \times  {cot}^{2} θ

\bf \:  ⟼  {sin}^{2} θ(1 +  {cot}^{2} θ)

\bf \:  ⟼  {sin}^{2} θ \times  {cosec}^{2}θ

\bf \:  ⟼  {sin}^{2} θ \times \dfrac{1}{ {sin}^{2}θ }  = 1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : e} ✍

\bf \:LHS  ⟼sinθ(1 +  {cot}^{2} θ)

\bf \:  ⟼ sinθ \times  {cosec}^{2} θ

\bf \:  ⟼ sinθ \times  \dfrac{1}{ {sin}^{2} θ}

\bf \:  ⟼ \dfrac{1}{sinθ}  = cosecθ

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : f} ✍

\bf \:LHS  ⟼cosA(1 +  {tan}^{2} A)

\bf \:  ⟼ cosA \times  {sec}^{2} A

\bf \:  ⟼ cosA \times \dfrac{1}{ {cos}^{2} A}

\bf \:  ⟼ \dfrac{1}{cosA}  = secA

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : g} ✍

\bf \:LHS  ⟼ {(sinx - cosx)}^{2}

\bf \:  ⟼  {sin}^{2} x +  {cos}^{2} x - 2 \times sinx \times cosx

\bf \:  ⟼ 1 - 2sinx \: cosx

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : h} ✍

\bf \:LHS  ⟼(1 -  {sin}^{2} A) {cosec}^{2} A

\bf \:  ⟼  {cos}^{2} A \times \dfrac{1}{ {sin}^{2} A}  =  {cot}^{2} A

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : i} ✍

\bf \:LHS  ⟼cosθ \times  \sqrt{1 +  {cot}^{2} θ}

\bf \:  ⟼ cosθ \times  \sqrt{ {cosec}^{2}θ }

\bf \:  ⟼ cosθ \times cosecθ

\bf \:  ⟼ cosθ \times \dfrac{1}{sinθ}

\bf \:  ⟼ cotθ =  \sqrt{ {cot}^{2} θ}

\bf \:  ⟼  \sqrt{ {cosec}^{2} θ - 1}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

\bf \:\large \red{AηsωeR : j} ✍

\bf \:LHS  ⟼cosθ \: cosecθ \:  \sqrt{ {sec}^{2}θ - 1 }

\bf \:  ⟼ cosθ \times \dfrac{1}{sinθ}  \times  \sqrt{ {tan}^{2} θ}

\bf \:  ⟼ cotθ \times tanθ = 1

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

_________________________________________

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

_________________________________________


Anonymous: Good answer mate (:
mathdude500: Thanks alot for your appreciation
mathdude500: (:
Similar questions