Prove the following using complex numbers.
Answers
Answered by
3
Step-by-step explanation:
left off:
sin(2kθ)2sinθ+cos((2k+1)θ)
sin(2kθ)2sinθ+cos((2k+1)θ)
Let x=2kθx=2kθ. Then the expression is
sinx2sinθ+cos(x+θ)
sinx2sinθ+cos(x+θ)
Angle sum identity gives
sinx2sinθ+cosxcosθ−sinxsinθ
sinx2sinθ+cosxcosθ−sinxsinθ
=sinx+2cosxcosθsinθ−2sinxsin2θ2sinθ.
=sinx+2cosxcosθsinθ−2sinxsin2θ2sinθ.
Factoring, we get
=(1−2sin2θ)sinx+(2cosθsinθ)cosx2sinθ.
=(1−2sin2θ)sinx+(2cosθsinθ)cosx2sinθ.
We use the double angle formula and angle sum formula in reverse:
=cos2θsinx+sin2θcosx2sinθ
=cos2θsinx+sin2θcosx2sinθ
=sin(x+2θ)2sinθ
=sin(x+2θ)2sinθ
=sin(2kθ+2θ)2sinθ
=sin(2kθ+2θ)2sinθ
=sin(2(k+1)θ)2sinθ.
=sin(2(k+1)θ)2sinθ.
This completes the inductive step.
Answered by
7
Answer :
Similar questions