Math, asked by keerthan51291, 10 months ago

Prove the identity of cos(x-pi/3)+sin(pi/6-x)=cosx

Answers

Answered by BendingReality
17

Answer:

\sf \cos \left( x - \dfrac{\pi}{3} \right) + \sin \left(\dfrac{\pi}{6} - x \right) = \cos x \ [Proved]

Step-by-step explanation:

Given :

\sf \cos \left( x - \dfrac{\pi}{3} \right) + \sin \left(\dfrac{\pi}{6} - x \right) = \cos x

\sf L.H.S = \cos \left( x - \dfrac{\pi}{3} \right) + \sin \left(\dfrac{\pi}{6} - x \right)

Converting sin into cos by using complementary formula :

\sf \rightarrow \cos \left( x - \dfrac{\pi}{3} \right) + \cos \left(\dfrac{\pi}{2}- \left( \dfrac{\pi}{6} - x \right) \right)

\sf \rightarrow \cos \left( x - \dfrac{\pi}{3} \right) + \cos \left(\dfrac{\pi}{3}+ x \right)

Now using formula cos C + cos D  :

\sf \cos \ C + \cos \ D = 2 \cos \left( \dfrac{C+D}{2} \right).cos \left( \dfrac{C-D}{2} \right)

\sf \rightarrow \cos \left(\dfrac{\pi}{3}+ x \right)+ \cos \left( x - \dfrac{\pi}{3} \right)

\sf \rightarrow 2 \cos \left(\dfrac{\dfrac{\pi}{3}+ x +  x - \dfrac{\pi}{3}}{2} \right).\cos \left(\dfrac{\dfrac{\pi}{3}+ x -  x + \dfrac{\pi}{3}}{2}\right)

\sf \rightarrow 2 \cos \left(\dfrac{2.x}{2} \right).\cos \left(\dfrac{2.\dfrac{\pi}{3}}{2}\right)

\sf \rightarrow 2 \cos \left(x \right).\cos \left(\dfrac{\pi}{3} \right)

We know :

\cos \left(\dfrac{\pi}{3} \right) = \dfrac{1}{2}

\sf \rightarrow 2 \cos \left(x \right).\left(\dfrac{1}{2} \right)

\sf \rightarrow \cos \left(x \right)

Since L.H.S. = R.H.S.

Hence proved.

Attachments:
Similar questions