Prove the identity tan^2(x) - sin^2(x) = tan^2(x) sin^2(x)
Answers
Answered by
1
Hi ,
LHS = tan²x - sin²x
= sin²x / cos²x - sin²x / 1
= sin²x [ 1 / cos²x - 1 / 1 ]
= sin²x [ ( 1 - cos²x ) / cos²x ]
= ( sin²x / cos²x ) ( 1 - cos²x )
= tan²x sin²x
= RHS
I hope this helps you.
:)
LHS = tan²x - sin²x
= sin²x / cos²x - sin²x / 1
= sin²x [ 1 / cos²x - 1 / 1 ]
= sin²x [ ( 1 - cos²x ) / cos²x ]
= ( sin²x / cos²x ) ( 1 - cos²x )
= tan²x sin²x
= RHS
I hope this helps you.
:)
nikhilbastian:
thx
Similar questions
History,
8 months ago
English,
8 months ago
Computer Science,
1 year ago
Math,
1 year ago
History,
1 year ago