Math, asked by toshiyadav01, 10 months ago

Prove the identity (x+y)cube = x cube + y cube +3xy(x+y) Please answer fast its really urgent..

Answers

Answered by Anonymous
33

Given identity to prove

( x + y )³ = x³ + y³ + 3xy( x + y )

Consider LHS

= ( x + y )³

It can be written as

= ( x + y )¹ ⁺ ²

Since a^( m + n ) = a^m × a^n

= ( x + y ) × ( x + y )²

Using algebraic identity ( x + y )² = x² + y² + 2xy

= ( x + y )( x² + y² + 2xy )

= x( x² + y² + 2xy ) + y( x² + y² + 2xy )

= x³ + xy² + 2x²y + x²y + y³ + 2xy²

Adding like terms

= x³ + y³ + 3x²y + 3xy²

Taking 3xy common in the expression ( 3x²y + 3xy² )

= x³ + y³ + 3xy( x + y )

= RHS

Hence proved.

Answered by Anonymous
17

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 : \implies{\sf{ (x + y)^{3}  =  {x}^{3}  +  {y}^{3}  + 3xy(x + y)}} \\ \\

{\bf{\blue{\underline{Now:}}}}

To prove this we know that,

 : \implies{\sf{ (x + y) ^{2} =  {x}^{2}  + 2xy +  {y}^{2}  }} \\ \\

And,

 : \implies{\sf{ (x + y) ^{3} =  (x + y)(x + y)^{2}   }} \\ \\

 : \implies{\sf{ (x + y) ^{2} =  (x + y)( {x}^{2}  + 2xy +  {y}^{2} ) }} \\ \\

 : \implies{\sf{ (x + y) ^{2} =  x ( {x}^{2}  + 2xy +  {y}^{2} ) + y( {x}^{2}  + 2xy +  {y}^{2}  )}} \\ \\

 : \implies{\sf{  {x}^{3}  + 2 {x}^{2}y + x {y}^{2}   + y {x}^{2}  + 2x {y}^{2}  +  {y}^{3} }} \\ \\

And,

 : \implies{\sf{ (x + y) ^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3y {x}^{2} +  {y}^{3}  }} \\ \\

Take 3xy common,

 : \implies{\sf{ (x + y) ^{3}  =  {x}^{3}   +  {y}^{3} + 3xy(x + y)}} \\ \\

Hence proved!!

Similar questions