Physics, asked by mahendrashah1972, 9 months ago

Prove the result that the velocity v of translation of a rolling body at the bottom of a inclined plane of height is given by V^2=2gh/1+k^2/R

Answers

Answered by Anonymous
2

\boxed{ \huge{ \mathfrak{ \fcolorbox{red}{yellow}{\purple{Answer}}}}} \\  \\  \star \:  \blue{ \mathfrak{To \: Prove}} \\  \\  \implies \rm  \: the \: velocity  \: of \: translation \: of \: a \\  \rm \: rolling \: body \: at \: the \: bottom  \: of \: a \: inclined \\  \rm \: plane  \: of \: height \: h \: is \: given \: by... \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \boxed{ \pink{ \bold{ {v}^{2}  =  \frac{2gh}{1 +  \frac{ {k}^{2} }{ {r}^{2} } }}}} \\  \\  \star \:  \blue{ \mathfrak{Concept }} \\  \\  \implies \rm \: law\: of \: energy \: conservation \: says  \\  \rm \: that \: initial \: energy \: of \: system \: is \: always \:  \\  \rm \: remain \: same \: as \: final \: energy \: of \: system. \\  \\  \implies \rm \: initial \: potential \: energy = mgh \\  \\  \implies \rm \: final \: kinetic\: energy =  \frac{1}{2} m {v}^{2} \:  (1 +  \frac{ {k}^{2} }{ {r}^{2} })  \\  \\  \star \:  \blue{ \mathfrak{Derivation}} \\  \\  \implies \rm \: initial \: energy = final \: energy \\  \\  \implies \rm \:  mgh =  \frac{1}{2} m {v}^{2}  \: (1 +  \frac{ {k}^{2} }{ {r}^{2} } ) \\  \\  \therefore \rm \:   \boxed{ \rm{\orange{ {v}^{2}  =  \frac{2gh}{1 +  \frac{ {k}^{2} }{ {r}^{2} } }}}}

Similar questions