Math, asked by marakroma18otss61, 1 year ago

prove the trigonometric identities

Attachments:

Answers

Answered by 9552688731
4
LHS

= tan²∅ - sin²∅

= sin²∅/cos²∅ - sin²∅

= sin²∅- sin²∅cos²∅/cos²∅

= sin²∅(1-cos²∅)/cos²∅

= sin²∅(sin²∅)/cos²∅

= sin²∅/cos²∅ × sin²∅

= tan²∅ × sin²∅

LHS = RHS

marakroma18otss61: how you got tan2 = sin/cos...im confuse in this part
9552688731: no bro we know tan∅ = sin∅/cos∅ then square both side tan²∅ = sin²∅/cos²∅
9552688731: bro see once again i write tan²∅ = sin²∅/cos²∅ not tan²∅ = sin∅/cos∅. //thank you//
marakroma18otss61: thank you...
marakroma18otss61: but bro...in trigonometric identities tan^2@= sec^2@-1
9552688731: yes it is also correct tan²∅ = sec²∅-1 ,. tan²∅ = 1/cos²∅ - 1 ,. tan²∅ = 1-cos²∅/cos²∅,. tan²∅ = sin²∅/cos²∅
marakroma18otss61: thank you very much...
Answered by Anonymous
3
Hey friend

Here is your answer

TO PROVE :

tan²@ - sin²@= tan²@sin²@

LHS:

=tan²@ - sin²@

=(sin²@/cos²@)-sin²@

=sin²@ [ (1/cos²@)-1 ]

=sin²@ [ (1-cos²@)/cos²@ ]

[USING sin²@+cos²@=1
1-cos²@=sin²@]

=sin²@(sin²@/cos²@)

[USING sin@/cos@=tan@]

=sin²@tan²@

=RHS

HENCE PROVED

==================================

HOPE THIS HELPS YOU
Similar questions