Prove this
1=0
Only the true brainy can answer this .
Answers
Answered by
2
HEY FREIND:)
In short, the multiplicative identity is the number 1, because for any other number x, 1*x = x. So, the reason that any number to the zero power is one is because any number to the zero power is just the product of no numbers at all, which is the multiplicative identity, 1.
In short, the multiplicative identity is the number 1, because for any other number x, 1*x = x. So, the reason that any number to the zero power is one is because any number to the zero power is just the product of no numbers at all, which is the multiplicative identity, 1.
siddhantvrocks:
Heres my version
Answered by
2
hey mate here is your answer
following is a "proof" that one equals zero.
Consider two non-zero numbers x and y such that
x = y.
Then x2 = xy.
Subtract the same thing from both sides:
x2 - y2 = xy - y2.
Dividing by (x-y), obtain
x + y = y.
Since x = y, we see that
2 y = y.
Thus 2 = 1, since we started with y nonzero.
Subtracting 1 from both sides,
1 = 0.
I hope it's helpful for you
Similar questions