prove this............
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
Attachments:
losserhu:
not clear
Answered by
1
Given :
BD = CD
AE is perpendicular to BC
To prove :
AB² + AC² = 2(AD² + BD²)
Proof :
By Pythagoras Theorem,
In triangle ABE ,
AB² = AE² + BE²
AB²= AE²+(BD-DE)²
AB²=AE² + BD² + DE² -2(BD)(DE) ----(1)
Similarly In triangle AEC ,
AC²= AE² + CE²
AC²= AE² +(BD+DE)² {BD=CD}
AC²= AE²+BD²+DE²+2(BD)(DE)-------(2)
In Triangle ADE,
AD²= AE²+DE² -----------------(3)
ADDING (1) & (2)
AB²+AC² = 2AE²+2BD²+2DE² –2(BD)(DE) +2(BD)(DE)
AB² + AC²= 2(AE²+DE²+BD²) {Since (3) }
AB²+AC²= 2(AD²+BD²)
BD = CD
AE is perpendicular to BC
To prove :
AB² + AC² = 2(AD² + BD²)
Proof :
By Pythagoras Theorem,
In triangle ABE ,
AB² = AE² + BE²
AB²= AE²+(BD-DE)²
AB²=AE² + BD² + DE² -2(BD)(DE) ----(1)
Similarly In triangle AEC ,
AC²= AE² + CE²
AC²= AE² +(BD+DE)² {BD=CD}
AC²= AE²+BD²+DE²+2(BD)(DE)-------(2)
In Triangle ADE,
AD²= AE²+DE² -----------------(3)
ADDING (1) & (2)
AB²+AC² = 2AE²+2BD²+2DE² –2(BD)(DE) +2(BD)(DE)
AB² + AC²= 2(AE²+DE²+BD²) {Since (3) }
AB²+AC²= 2(AD²+BD²)
Similar questions