Prove this identity.
Show appropriate calculations.
Attachments:
Answers
Answered by
2
Hopefully, this identity will not irritate anyone.
Attachments:
Answered by
2
LHS =( loga N ).( logb N) +( logb N ).(logc N) + (logc N).( loga N)
we know,
log{ a base b } = 1/log{ b base a }
use this concept here,
= 1/( logN a )( logN b ) + 1/( logN b)(logN c) + 1/( logN c )( logN a )
let (logN a ) = x
(logN b ) = y
( logN c) = z
so,
= 1/xy + 1/yz + 1/zx
= ( x + y + z)/xyz
now put x, y and z value
= { ( logN a ) + ( logN b) + ( logN c ) }/{(lonN a ).( logN b).(logN c) }
base is same of denominator so,
= {logN ( a × b × c)}/ {(logN a ).( logN b).(logN c) }
= 1/(logabc N) /1/ {(loga N ).( logb N).(logc N) }
=( loga N).( logb N).( logc N)/(logabc N ) =RHS
we know,
log{ a base b } = 1/log{ b base a }
use this concept here,
= 1/( logN a )( logN b ) + 1/( logN b)(logN c) + 1/( logN c )( logN a )
let (logN a ) = x
(logN b ) = y
( logN c) = z
so,
= 1/xy + 1/yz + 1/zx
= ( x + y + z)/xyz
now put x, y and z value
= { ( logN a ) + ( logN b) + ( logN c ) }/{(lonN a ).( logN b).(logN c) }
base is same of denominator so,
= {logN ( a × b × c)}/ {(logN a ).( logN b).(logN c) }
= 1/(logabc N) /1/ {(loga N ).( logb N).(logc N) }
=( loga N).( logb N).( logc N)/(logabc N ) =RHS
Similar questions