Math, asked by sejalmestry, 11 months ago

Prove this : logarithms ​

Attachments:

Answers

Answered by Anonymous
6

\underline{\textbf{\large{ Given :}}}

 log( \frac{x + y }{3} )  =  \frac{1}{2} logx +  \frac{1}{2} logy

\underline{\textbf{\large{ To prove :}}}

 \frac{x}{y}  +  \frac{y}{x}  = 7

\underline{\textbf{\large{ proof: }}}

log( \frac{x + y}{3} ) =  \frac{1}{2}logx +  \frac{1}{2}  logy

log( \frac{x + y}{3} ) =  \frac{1}{2}(logx + logy)

▶ Apply log rule[ loga + logb = logab ]

log( \frac{x + y}{3} ) =  \frac{1}{2}logxy

▶ Apply log rule [log m^(n) = n log m ]

log( \frac{x + y}{3} ) = log {(xy)}^{ \frac{1}{2} }

( \frac{x + y}{3} ) =  {(xy)}^{ \frac{1}{2} }

Squaring on both the sides,

 { (\frac{x + y}{3} )}^{2}  =  { ({(xy)}^{ \frac{1}{2} }) }^{2}

 \frac{ {(x + y)}^{2} }{9}  = xy

 {(x + y)}^{2}  = 9xy

 {x}^{2}  + 2xy +  {y}^{2}  = 9xy

 {x}^{2}  +  {y}^{2}  = 9xy - 2xy

 {x}^{2}  +  {y}^{2}  = 7xy

Dividing xy on both the sides

 { \frac{ {x}^{2} +  {y}^{2}  }{xy} } = 7

 \frac{ {x}^{2} }{xy}  +  \frac{ {y}^{2} }{xy}  = 7

 \frac{x}{y}  +  \frac{y}{x}  = 7

\underline{\textbf{hence proved}}

Similar questions