Math, asked by BrainlySunShine, 11 months ago

Prove this

Only who. Knows this​

Attachments:

Answers

Answered by Anonymous
0

❤️\huge\bold\orange{heLLo\:maTe}❤️

LHS = tan²A - tan²B

={ sin²A/cos²A } - { sin²B/cos²B }

= {sin²A.cos²B - sin²B.cos²A }/cos²A.cos²B

we know,

sin²x + cos²x = 1

so,

cos²B = 1 - sin²B

cos²A = 1 - sin²A

use this here,

= {sin²A (1 - sin²B) - sin²B(1 - sin²A)}/cos²A.cos²B

= { sin²A - sin²A.sin²B - sin²B + sin²A.sin²B }/cos²A.cos²B

= ( sin²A - sin²B )/cos²A.cos²B = RHS

Answered by ankitasharma
0

Answer:

heya see the pics below

similarly substitute cos^2 = 1-sin^2

Attachments:
Similar questions