Math, asked by chinmaydpatil0pdgpam, 9 months ago

prove this...
please immediately​

Attachments:

Answers

Answered by DrNykterstein
0

 =  =  >  \:  \:  \sqrt{ \frac{ \csc x \:  - 1 }{ \csc x \:  + 1 } }  =  \frac{1}{ \sec x +  \tan x }   \\  \\  \mathtt{ Solving \: L.H.S \: seprately \: }\\  \\  =  =  >  \:  \: \sqrt{ \frac{ \csc x \:  - 1 }{ \csc x \:  + 1 } } \times \sqrt{ \frac{ \csc x \:  - 1 }{ \csc x \:   -  1 } } \\  \\  =  =  >  \:  \:    \sqrt{ \frac{ {( \csc \: x  -  1) }^{2} }{( \csc \: x + 1)( \csc \: x  - 1)   } }  \\  \\  =  =  >  \:  \:   \sqrt{ \frac{ {( \csc \: x  -  1) }^{2} }{ { \csc}^{2} \: x - 1 } }  \\  \\  =  =  >  \:  \:  \sqrt{ \frac{ {( \csc \: x  -  1) }^{2} }{ { \cot }^{2} \: x } }  \qquad \quad \: ( \because \: 1 +  { \cot }^{2} \: x =  { \csc}^{2}  \: x \: )  \\  \\  =  =  >  \:  \:  \frac{ \csc \: x \:  - 1}{ \cot \: x}  \\  \\   =  =  >  \:  \:  \frac{ \frac{1}{ \sin \: x } - 1 }{ \frac{ \cos \: x }{ \sin \: x } }  \\  \\  =  =  >  \:  \:  \frac{ \frac{1 -  \sin \: x }{ \sin \: x } }{ \frac{ \cos \: x }{ \sin \: x } } \\  \\  =  =  >  \:  \:  \frac{1 -  \sin \: x }{ \sin \: x }   \times  \frac{ \sin \: x }{ \cos \: x }  \\  \\  =  =  >  \:  \:  \frac{1 -  \sin \: x }{ \cos \: x }  \\  \\  =  =  >  \:  \:  \sec \: x -  \tan \: x \times  \frac{ \sec \: x +  \tan \: x }{ \sec \: x +  \tan \: x }  \\  \\  =  =  >  \:  \:  \frac{ {( \sec \: x) }^{2}  -  { (\tan \: x) }^{2} }{ \sec \: x +  \tan \: x  }  \\  \\  =  =  >  \:  \:  \frac{ { \sec}^{2} \: x -  { \tan}^{2} \: x  }{ \sec \: x +  \tan \: x }  \\  \\  =  =  >  \:  \:  \frac{1}{ \sec \: x +  \tan \: x   }  \qquad \quad \: ( \because \: 1 +  { \tan}^{2}  \: x =  {  \sec  }^{2}  \: x \: ) \\  \\  \mathtt{ \: L.H.S \:  = R.H.S} \\ \\ \bold{Hence, Proved}

Similar questions