Math, asked by rishisourav5, 9 months ago

Prove This
\frac{tanQ}{(1 - cotQ)}  + \frac{cotQ}{(1 - tanQ)} = (1 + secQcosecQ)

Answers

Answered by Anonymous
11

\huge\boxed{\underline{\mathcal{\red{A}\green{N}\pink{S}\orange{W}\blue{E}\pink{R}}}}&lt;body bgcolor="</strong><strong>silver</strong><strong> "&gt;

&lt;font color="</strong><strong>gold</strong><strong>"&gt;

\bold{\frac{tanQ}{(1 - cotQ)} + \frac{cotQ}{(1 - tanQ)} = (1 + secQcosecQ)}

LHS,

\bold{\frac{sinQ}{cosQ} /\frac{1-cosQ} {sinQ} +\frac{cosQ}{sinQ} /\frac{1-sinQ} {cosQ}}

\bold{\frac{SinQ}{cosQ} /\frac{sinQ-cosQ} {sinQ} +\frac{cosQ}{sinQ} /\frac{cosQ-sinQ}{cosQ}}

\bold{\frac{sin^2Q}{cosQ(sinQ-cosQ)} +\frac{cos^2Q}{sinQ(cosQ-sinQ)}}

\bold{\frac{sin^3Q+cos^3Q} {sinQcosQ(sinQ-cosQ)}}

\bold{\frac{(sinQ-cosQ)(sin^2Q+cos^2Q+sinQcosQ)}{sinQcosQ(sinQ-cosQ)}}

\bold{\frac{sin^2Q+cos^2Q+sinQcosQ} {sinQcosQ}}

\bold{\frac{1+sinQcosQ}{sinQcosQ}}

\bold{\frac{1}{sinQcosQ}+1}

\bold{cosecQsecQ+1}. RHS &lt;font color=lime&gt;

\bold{LHS=RHS}&lt;font color=cyan&gt;

\bold{Hence proved}

Similar questions