Math, asked by arnavmann77631, 11 months ago

prove this trignometric identity ​

Attachments:

Answers

Answered by Mysterioushine
67

 \huge {\underline{ \mathfrak{ \red s \blue o \green l \pink u \orange t  \purple i  \red  t o \pink n : -  }}}

 \dfrac{1}{1 +  \sin( \theta) }  +  \dfrac{1}{1 -  \sin( \theta) }

★ Taking LCM ,

 \longrightarrow \:  \dfrac{1 +  \sin( \theta)  + 1 -  \sin( \theta) }{[ 1 +  \sin( \theta)  ][  1 -  \sin( \theta)  ] }  \\  \\  \longrightarrow \:  \frac{1 + 1    \cancel{ + \sin( \theta)}  \cancel{ - \sin( \theta) } }{[ 1 +  \sin( \theta)  ][ 1 -  \sin( \theta) ]  }

 \large {\underline {\boxed {\bigstar {\sf{(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }}}}}

 \longrightarrow \:  \dfrac{1 + 1}{1 -  \sin {}^{2} ( \theta) }

 \large {\underline {\boxed {\bigstar{ \sf{1 -  \sin {}^{2} ( \theta)  =  \cos^{2}( \theta) }}}}}

 \longrightarrow \:  \dfrac{2}{ \cos {}^{2} ( \theta) }  \\  \\  \longrightarrow \: 2 \times  \frac{1}{ \cos {}^{2} ( \theta) }

 \large {\underline {\boxed {\bigstar {\sf{ \:  \dfrac{1}{ \cos {}^{2} ( \theta) }  =  { \sec}^{2}( \theta) }}}}}

 \longrightarrow2  \:  \sec {}^{2} ( \theta)  \\  \\  \longrightarrow \: rhs

 \dag \huge   {\blue{\boxed  {\green{\rm{HENCE \: \:PROVED}}}}}

 \huge {\underline {\mathfrak{  \red s \blue o \green m \pink e  \: \orange f \purple o  \red  rm \pink u \blue  l \green a \red e : -  }}}

 \large \sf \: (1) \:  \frac{ \sin( \theta) }{ \cos (\theta)}  =  \tan( \theta)  \\  \\  \sf \large (2) \:  \frac{ \cos( \theta) }{ \sin( \theta) }  =  \cot( \theta)  \\  \\  \large \sf \: (3)  \: \frac{1}{  \sin( \theta) }  =  \csc( \theta)  \\  \\  \large \sf \: (4) \: 1 -  \cos { }^{2} ( \theta)  = \sin {}^{2}  (\theta)

Similar questions