Math, asked by Avstudent, 3 months ago

Prove: (Trigonometry)​

Attachments:

Answers

Answered by ZzyetozWolFF
18

Question:

 \bf \implies \:    \dfrac{ { \tan( \theta) }^{2} }{ \sec( \theta  - 1)^{2}  }  =  \dfrac{1 +  \cos( \theta) }{1 -  \cos( \theta) }

LHS:

 \implies \sf \:    \dfrac{ \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{  \big(\dfrac{1}{cos \theta} - 1 \big)^{2}  }  =  \dfrac{   \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{ \dfrac{(1 - cos \theta)^{2} }{cos ^{2} }  \theta}

 \implies \sf \:  \dfrac{ {sin}^{2} \theta }{1 +  {cos}^{2}  \theta \:  - 2 \: cos \theta}

RHS:

 \implies \sf  \dfrac{1 + cos \theta}{1 - cos \theta}  \times  \dfrac{1 - cos \theta}{1 - cos \theta}

 \implies \sf \:  \dfrac{1 - cos^{2}  \theta}{(1 - cos \theta)^{2} }  =  \dfrac{sin^{2}  \theta}{1 +  {cos}^{2}  \theta  - 2 cos  \theta}

LHS = RHS, hence proved!!

Extras:

  • Trigonometry is basically, the study of shapes.

  • \dfrac{OPPOSITE}{HYPOTENUSE} = sin

  • \dfrac{ADJACENT}{HYPOTENUSE} = cos

  • \dfrac{OPPOSITE}{ADJACENT} = tan

  • \dfrac{HYPOTENUSE}{OPPOSITE} = cosec

  • \dfrac{HYPOTENUSE}{ADJACENT} = sec

  • \dfrac{ADJACENT}{OPPOSITE} = cot

Anonymous: splendid ^^
Answered by Anonymous
13

{\large{\bold{\pink{\bf{\sf{\underline{Question}}}}}}}

Prove ( Trigonometry ) Attachment ( Given )

{\small{\bold{\red{\bf{\sf{\underline{L.H.S}}}}}}}

{\bold{\bf{\sf{\longmapsto \dfrac{\dfrac{ {sin}^{2} \theta}{{cos}^{2} \theta }}{ \big(\dfrac{1}{cos \theta}- 1 \big)^{2} } = \dfrac{ \dfrac{ {sin}^{2} \theta }{ {cos}^{2} \theta } }{ \dfrac{(1 - cos \theta)^{2} }{cos ^{2} } \theta}}}}}

{\bold{\bf{\sf{\longmapsto \dfrac{ {sin}^{2} \theta }{1 + {cos}^{2} \theta \: - 2 \: cos \theta}}}}}

{\small{\bold{\red{\bf{\sf{\underline{R.H.S}}}}}}}

{\bold{\bf{\sf{\longmapsto \dfrac{1 + cos \theta}{1 - cos \theta} \times \dfrac{1 - cos \theta}{1 - cos \theta}}}}}

{\bold{\bf{\sf{\longmapsto \dfrac{1 - cos^{2} \theta}{(1 - cos \theta)^{2} } = \dfrac{sin^{2} \theta}{1 + {cos}^{2} \theta - 2 cos \theta}}}}}

{\small{\bold{\red{\bf{\sf{\underline{Hence, \: verified}}}}}}}

{\large{\bold{\pink{\bf{\sf{\underline{Additional \: information}}}}}}}

Trigonometric Full Table :

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Trigonometric Identities :

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Trigonometric Table :

\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}

\rule{300}{1}

Request : Please see this answer from web browser or chrome just saying because I give some formulas here but they are not shown in app. Thank you.


Anonymous: awsm :)
Anonymous: Thank ya' (:
Similar questions